Personal tools
Skip to content. | Skip to navigation
Apache Airflow (or simply Airflow) is a platform to programmatically author, schedule, and monitor workflows. When workflows are defined as code, they become more maintainable, versionable, testable, and collaborative. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command line utilities make performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress, and troubleshoot issues when needed.
Creates a unified directory structure of all namespace packages, symlinking to the actual contents, in order to ease navigation.
ORC is a self-describing type-aware columnar file format designed for Hadoop workloads. It is optimized for large streaming reads, but with integrated support for finding required rows quickly. Storing data in a columnar format lets the reader read, decompress, and process only the values that are required for the current query. Because ORC files are type-aware, the writer chooses the most appropriate encoding for the type and builds an internal index as the file is written. Predicate pushdown uses those indexes to determine which stripes in a file need to be read for a particular query and the row indexes can narrow the search to a particular set of 10,000 rows. ORC supports the complete set of types in Hive, including the complex types: structs, lists, maps, and unions.
This package contains Protocol Buffers compiler for all programming languages
Python bindings for the XML Security Library.
Microsoft Azure Batch Client Library for Python
Microsoft Azure Container Instance Client Library for Python
Microsoft Azure Container Registry Client Library for Python
Microsoft Azure Container Service Management Client Library for Python
Microsoft Azure Cosmos DB Management Client Library for Python