Personal tools
Skip to content. | Skip to navigation
Nomad is a cluster manager, designed for both long lived services and short lived batch processing workloads. Developers use a declarative job specification to submit work, and Nomad ensures constraints are satisfied and resource utilization is optimized by efficient task packing. Nomad supports all major operating systems and virtualized, containerized, or standalone applications. The key features of Nomad are: Docker Support: Jobs can specify tasks which are Docker containers. Nomad will automatically run the containers on clients which have Docker installed, scale up and down based on the number of instances request, and automatically recover from failures. Multi-Datacenter and Multi-Region Aware: Nomad is designed to be a global-scale scheduler. Multiple datacenters can be managed as part of a larger region, and jobs can be scheduled across datacenters if requested. Multiple regions join together and federate jobs making it easy to run jobs anywhere. Operationally Simple: Nomad runs as a single binary that can be either a client or server, and is completely self contained. Nomad does not require any external services for storage or coordination. This means Nomad combines the features of a resource manager and scheduler in a single system. Distributed and Highly-Available: Nomad servers cluster together and perform leader election and state replication to provide high availability in the face of failure. The Nomad scheduling engine is optimized for optimistic concurrency allowing all servers to make scheduling decisions to maximize throughput. HashiCorp Ecosystem: Nomad integrates with the entire HashiCorp ecosystem of tools. Along with all HashiCorp tools, Nomad is designed in the unix philosophy of doing something specific and doing it well. Nomad integrates with tools like Packer, Consul, and Terraform to support building artifacts, service discovery, monitoring and capacity management.
Client agent for Nomad
Server agent for Nomad
Packer is a tool for building identical machine images for multiple platforms from a single source configuration. Packer is lightweight, runs on every major operating system, and is highly performant, creating machine images for multiple platforms in parallel. Packer comes out of the box with support for the following platforms: Amazon EC2 (AMI). Both EBS-backed and instance-store AMIs DigitalOcean Docker Google Compute Engine OpenStack Parallels QEMU. Both KVM and Xen images. VirtualBox VMware Support for other platforms can be added via plugins. After Packer is installed, create your first template, which tells Packer what platforms to build images for and how you want to build them. In our case, we'll create a simple AMI that has Redis pre-installed. Save this file as quick-start.json. Be sure to replace any credentials with your own. { "builders": [{ "type": "amazon-ebs", "access_key": "YOUR KEY HERE", "secret_key": "YOUR SECRET KEY HERE", "region": "us-east-1", "source_ami": "ami-de0d9eb7", "instance_type": "t1.micro", "ssh_username": "ubuntu", "ami_name": "packer-example {{timestamp}}" }] } Next, tell Packer to build the image: $ packer build quick-start.json ... Packer will build an AMI according to the "quick-start" template. The AMI will be available in your AWS account. To delete the AMI, you must manually delete it using the AWS console. Packer builds your images, it does not manage their lifecycle. Where they go, how they're run, etc. is up to you.